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Abstract 

Detailed geologic mapping, structural analysis, and well data have been integrated 

to elucidate the stratigraphic framework and structural setting of the Tuscarora 

geothermal area. Tuscarora is an amagmatic geothermal system that lies in the northern 

part of the Basin and Range province, ~15 km southeast of the Snake River Plain and ~90 

km northwest of Elko, Nevada. The Tuscarora area is dominated by late Eocene to 

middle Miocene volcanic and sedimentary rocks, all overlying Paleozoic 

metasedimentary rocks. A geothermal power plant was constructed in 2011 and currently 

produces 18 MWe from an ~170°C reservoir in metasedimentary rocks at a depth of ~1430 

m. Analysis of drill core reveals that the subsurface geology is dominated to depths of 

~700-1000 m by intracaldera deposits of the Eocene Big Cottonwood Canyon caldera, 

including blocks of basement-derived megabreccia. Furthermore, the Tertiary-Paleozoic 

nonconformity within the geothermal field has been recognized as the margin of this 

Eocene caldera. Structural relations combined with geochronologic data from previous 

studies indicate that Tuscarora has undergone extension since the late Eocene, with 

significant extension in the late Miocene-Pliocene to early Pleistocene. Kinematic 

analysis of fault slip data reveal an east-west-trending least principal paleostress 

direction, which probably reflects an earlier episode of Miocene extension. 

Two distinct structural settings at different scales appear to control the geothermal 

field. The regional structural setting is a 10-km wide complexly faulted left step or relay 

ramp in the west-dipping range-bounding Independence-Bull Run Mountains normal 

fault system. Geothermal activity occurs within the step-over where sets of east- and 

west-dipping normal faults overlap in a northerly trending accommodation zone. The 
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distribution of hot wells and hydrothermal surface features, including boiling springs, 

fumaroles, and siliceous sinter, indicate that the geothermal system is restricted to the 

narrow (< 1 km) axial part of the accommodation zone, where permeability is maintained 

at depth around complex fault intersections. Shallow up-flow appears to be focused along 

several closely spaced steeply west-dipping north-northeast-striking normal faults within 

the axial part of the accommodation zone. These faults are favorably oriented for 

extension and fluid flow under the present-day northwest-trending regional extension 

direction indicated by previous studies of GPS geodetic data, earthquake focal 

mechanisms, and kinematic data from late Quaternary faults.  

The recognition of the axial part of an accommodation zone as a favorable 

structural setting for geothermal activity may be a useful exploration tool for 

development of drilling targets in extensional terranes, as well as for developing geologic 

models of known geothermal fields. Preliminary analysis of broad step-overs similar to 

Tuscarora reveals that geothermal activity occurs in a variety of subsidiary structural 

settings within these regions.  In addition, the presence of several high-temperature 

systems in northeastern Nevada demonstrates the viability of electrical-grade geothermal 

activity in this region despite low present-day strain rates as indicated by GPS geodetic 

data. Geothermal exploration potential in northeastern Nevada may therefore be higher 

than previously recognized. 
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1. Introduction 

Geothermal activity is observed in a wide variety of tectonic settings, including 

continental rifts, oceanic spreading centers, magmatic arcs, and intraplate hot spots. 

Within all of these tectonic environments, faults commonly control fluid flow in the 

brittle crust and are therefore critical to the exploration of both fossil and active 

hydrothermal systems. An additional factor that impacts fluid flow is the internal 

architecture of individual fault zones (i.e. the development of gouge versus breccia). 

Faults may localize fluid flow along high permeability breccia-dominated pathways or 

inhibit fluid flow across a relatively impermeable fault core consisting of clay gouge 

(Caine et al., 1996). Although faults play a critical role in controlling fluid flow within 

the crust, the structural settings conducive to geothermal activity are generally not well 

characterized. 

Characterizing the favorable structural settings of geothermal activity is 

particularly important in the Basin and Range province of western North America.  The 

Basin and Range is a broad region of extension and transtension that accommodates 

diffuse deformation between the Pacific and North American plates (Figure 1.1) 

(Wernicke, 1992). Quaternary volcanism, which is commonly associated with geothermal 

systems worldwide, is mainly restricted to the eastern and western margins of the Basin 

and Range (Best et al., 1989; Glazner and Ussler, 1989; Lipman, 1992). The majority of 

the 431 known geothermal systems in the Basin and Range are not spatially associated 

with recent magmatism and thus are considered to be amagmatic (Faulds et al., 2004, 

2006). In the absence of a magmatic heat source, faults are the most critical element 

controlling geothermal activity. Four interrelated aspects of Basin and Range tectonics 
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contribute to the abundance and distribution of geothermal activity across the province: 

1) high rates of dilatant crustal strain (Blewitt et al., 2003; Coolbaugh et al., 2005; Faulds 

et al., 2012); 2) transfer of dextral shear from the Walker Lane to extension in the  

 
Figure 1.1. Map of strain rates and geothermal systems in the Great Basin and adjacent regions (slightly 
modified from Faulds et al., 2012, with original strain map from Kreemer et al., 2012). Tuscarora lies in a 
region of comparatively low strain rates, unlike the geothermal systems clustered in the northwestern Great 
Basin. Strain rates reflect the second invariant strain rate tensor 10-9/yr.  



3 
 

northwestern Great Basin (Faulds et al., 2004; Faulds and Henry, 2008); 3) elevated 

crustal heat flow of ~75±5 mWm-2 (Blackwell, 1983; Blackwell and Richards, 2004); and 

4) Quaternary extensional and transtensional faulting (Bell and Ramelli, 2007). In 

amagmatic systems, meteoric water travels downward to depths of 1-3 km along steeply 

dipping active faults, where it comes into contact with fractured rock heated by the 

anomalously high geothermal gradient.  

Despite the plethora of Quaternary normal faults and widespread high heat flow, 

known geothermal activity in the Basin and Range province is spatially restricted and 

favors specific structural settings. Steeply-dipping, breccia-dominated normal faults 

oriented approximately orthogonal to the least principal stress direction host most of the 

high temperature geothermal systems (Faulds et al., 2004, 2006, 2011). Favorable fault 

geometries include sites of strain arrest, where stress is elevated and fracture density is 

high, but displacement is relatively minor compared to the mid-segment of the fault 

system (Curewitz and Karson, 1997; Micklethwaite and Cox, 2004; Faulds et al., 2006). 

The most favorable structural settings for geothermal activity in the Basin and Range 

(Faulds et al., 2011) are: 1) step-overs (or relay ramps) linking normal faults, 2) 

terminations of normal faults where an individual fault breaks into multiple interacting 

fault splays, 3) fault intersections, 4) displacement transfer zones between strike-slip 

faults and normal faults, and 5) accommodation zones, where belts of oppositely dipping 

normal faults intermesh (Figure 1.2). Notably, many high temperature geothermal 

systems in the Great Basin are characterized by more than one favorable structural 

setting. 
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Figure 1.2. Examples of the five most common structural settings for geothermal activity found in the 
Great Basin. Red indicates area of geothermal upwelling (e.g. hot spring or subsurface temperature 
anomaly). A. Step-over where strain is transferred between two subparallel synthetically-dipping normal 
faults. The two continuous fault segments shown here overlap along strike, forming a relay ramp occupied 
by two smaller faults. However, strain may also be transferred between underlapping and/or hard-linked 
fault segments. B. Fault intersection. C. Termination of a discrete normal fault, where displacement is 
diffused into several smaller overlapping fault splays. D. Displacement transfer zone, where strain is 
accommodated by different modes of faulting. Shown here, sinistral slip on E-striking faults is transferred 
into down-to-the-west displacement in a northerly striking normal fault zone. E. Belts of overlapping 
normal faults that terminate in an accommodation zone. In this example, simplified from detailed mapping 
by Hinz et al. (2011a), an array of easterly dipping normal faults partially overlap with westerly dipping 
normal faults. The stippled area indicates the zone of fault interaction at the surface. 
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The purpose of this paper is to assess the structural setting of the Tuscarora geothermal 

field in northeastern Nevada, where Ormat Technologies, Inc. recently constructed an 18 

MWe capacity geothermal power plant. Although several robust geothermal systems are 

present in northeastern Nevada (Figure 1.1), the structural controls on geothermal activity 

in this relatively low-strain region are poorly understood. Thus, this study provides 

critical data to evaluate whether structural controls within the Basin and Range differ 

between tectonically distinct subregions of the province and are perhaps partly dependent 

on strain rates and directions. For example, a marked contrast exists between the tectonic 

setting of northeastern Nevada compared to the western and eastern parts of the Great 

Basin. Lower GPS geodetic strain rates, as recorded in the past ~20 years, and less 

historical seismicity characterize northeastern Nevada (Bennett et al., 2003; Anderson, 

2011). However, a M6.0 earthquake severely damaged the town of Wells in 2008 (dePolo 

et al., 2011), and the highest temperature amagmatic geothermal system in the Basin and 

Range resides at Beowawe (Figure 1.1).   

The structural setting of the Tuscarora geothermal system is described here in 

terms of the geometry, kinematics, and dynamics of faulting encompassing the 

geothermal field and adjacent areas. This study integrated detailed geologic mapping with 

well data and kinematic analyses of faults to elucidate the structural setting of the 

geothermal system. Geologic mapping at 1:24,000 scale of ~110 km2 of the northeastern-

most portion of the Tuscarora Mountains and northernmost Independence Valley was 

used to define the stratigraphy and structural framework (Plate 1). Stratigraphic units 

were further defined by petrographic analysis of thin sections. Kinematic analyses of 

fault surfaces to discern slip data was used to estimate the orientation of mean principal 
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stresses in the study area.  Detailed logging of lithology, structure, and alteration in drill 

core and well cuttings from the geothermal field constrained interpretations of the 

subsurface geology. Surface mapping and subsurface geology were integrated in five 

interpretive cross-sections to better understand the structural setting of the geothermal 

system. In addition, the geologic map, spring localities, and structural data were compiled 

in an ArcGIS geodatabase. 

 

2. Geologic Setting 

TERTIARY TECTONIC-MAGMATIC HISTORY 

Cenozoic extension in northeastern Nevada began earlier than elsewhere in the 

Great Basin region (Figure 1.1), overprinting a series of contractional episodes from the 

latest Paleozoic to late Mesozoic. Episodes of crustal extension in northeastern Nevada 

are well documented from ca. 40-38 Ma (Smith and Ketner, 1976), ca. 16-17 Ma (Zoback 

et al., 1994), and during the Quaternary (Wesnousky et al., 2005). In addition to these 

pulses, recent geochronologic analyses and geologic mapping in the Copper Basin, ~60 

km northeast of Tuscarora, suggest an episode of extension in the early Oligocene (Henry 

et al., 2011).  

Major episodes of Cenozoic magmatism in northeastern Nevada occurred in the 

Eocene to early Oligocene and the middle to late Miocene, approximately coinciding 

with periods of extension. Magmatism from ca. 45 to 36 Ma migrated across the 

northeastern Great Basin, with the eruption of calc-alkaline volcanic rocks and 

emplacement of shallow intrusions. This activity was part of a larger regional episode of 

dominantly silicic magmatism that began in southern British Columbia and swept 
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southward across western Montana, Idaho, western Utah and Nevada from the early 

Eocene to late Oligocene (Christiansen and Yeats, 1992).  The Tuscarora volcanic field is 

the largest of these Eocene volcanic centers in northeastern Nevada and is dominated by 

andesitic and dacitic lavas with lesser rhyolite and ash-flow tuff, all erupted between ca. 

40.0 and 39.3 Ma (Henry et al., 1999). Magmatism persisted in northeastern Nevada until 

approximately 36 Ma. 

Widespread magmatism resumed with bimodal volcanism ca 16.7 Ma associated 

with the inception of the Yellowstone hot spot in the Oregon-Idaho-Nevada border area 

(Pierce and Morgan, 1992; Brueseke et al., 2008). Rhyolitic caldera complexes erupted 

between 16.7 and 15.0 Ma in northwestern Nevada and southeastern Oregon (Castor and 

Henry, 2000; Coble and Mahood, 2012). Coeval rhyolite flows erupted from widely 

distributed vents across north-central Nevada and southern Idaho (Brueseke et al., 2008).  

Middle Miocene silicic volcanism was contemporaneous with renewed extension in the 

northern Basin and Range province as well as with the eruption of the Steens and 

Columbia River flood basalts (Christiansen and Yeats, 1992) and the basalts in the 

northern Nevada rift (Zoback et al., 1994). Volcanism advanced toward the northeast at 

approximately 14-11 Ma, forming the southernmost central Snake River Plain (Pierce and 

Morgan, 1992). In the Oregon-Idaho-Nevada border area, basaltic volcanism persisted 

from ca. 11 to 5 Ma forming the bulk of the Owyhee Plateau.  Basalt flows at the 

southernmost edge of the Owyhee Plateau lie ~25 km northwest of the geothermal field. 

Whole rock analysis of these basalts yielded K/Ar ages of 9.3 ± 0.68 Ma and 8.9 Ma ± 

0.63 Ma (Hart et al., 1984), and thus are the youngest volcanic rocks in the Tuscarora 

region. 
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Magmatism in the late Eocene-early Oligocene and middle to late Miocene 

approximately corresponds with periods of extension in the northern Basin and Range 

province. However, there is no correlation between the locations of particular magmatic 

centers and regions of focused extensional strain (Wernicke, 1992). Therefore, the 

relationship between magmatism and extension is broad, applicable at the scale of the 

Basin and Range province but not individual basins.  

NEOTECTONIC SETTING 

Areas of largest magnitude extensional strain have, in a general sense, shifted 

from the center of the northern Basin and Range province to the margins since the 

Miocene (Wernicke, 1992). At present, the north-central Basin and Range is a 

tectonically distinct part of the Basin and Range province characterized by low internal 

strain rates (Hammond et al., 2011) and sparse historic seismicity (Ramelli and dePolo, 

2011). However, the region is actively extending, as evidenced by the 6.0 M February 28, 

2008, Wells earthquake on a north-northeast-striking blind normal fault (Smith et al., 

2011). Other normal faults shown to be active in the Holocene in the north-central Basin 

and Range province include the Crescent fault (Friedrich et al., 2004), Dry Hills fault 

(Wesnousky et al., 2005), and system of faults bounding the west side of the Ruby-East 

Humboldt Range (Wesnousky and Willoughby, 2003). 

Analysis of long GPS time series (>10 yrs) from northeastern Nevada and 

westernmost Utah yields a maximum extension direction of N59°W at a rate of 4.6±0.8 

nanostrain/year, which is equivalent to 0.46±0.08 mm/year of extension across 100 km 

(Hammond et al., 2011). These findings are roughly consistent with the extension 

direction in the western Basin and Range, suggesting that this region is an active part of 
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the Pacific/North American plate boundary system. However, the majority of present-day 

deformation within the Basin and Range is concentrated at the margins of the province. 

At the western margin is the Walker Lane, a zone of transtensional shear that 

accommodates approximately 1 cm/year of dextral motion between the Sierra Nevada 

microplate and central Basin and Range (Figure 1.1) (Bennett et al., 2003; Hammond and 

Thatcher, 2004). The eastern Basin and Range province (east of 114°W) accommodates 

2.8 ± 0.2 mm/yr of approximately east-west-oriented extension, with the most rapid strain 

concentrated along the Wasatch fault zone (Bennett et al., 2003).  

Despite the relative quiescence of northeastern Nevada, Quaternary faults define 

the present-day topography. North-trending ranges are bound on at least one side by 

widely spaced, steeply dipping Quaternary normal faults that cut shallower dipping 

Tertiary normal faults (Henry and Colgan, 2011). The pattern of northerly trending 

structures is disrupted in northern Nevada by a series of east-northeast-striking 

discontinuous sinistral-normal faults and physiographic lineaments. This 150-200 km 

wide region, known as the Humboldt structural zone, extends more than 800 km from the 

Carson Sink in west-central Nevada to southeast Idaho (Figure 1.1) (Rowan and 

Wetlaufer, 1981; Faulds et al., 2004). The Humboldt geothermal belt is an east-northeast-

trending belt within the Humboldt structural zone of moderate to high temperature 

geothermal systems (Figure 2.1), which includes the Tuscarora and Beowawe systems in 

northeast Nevada. 

TUSCARORA GEOTHERMAL SYSTEM 

The Tuscarora geothermal field lies in the Hot Creek drainage ~1.5 km northwest 

of the northern Independence Valley in the northeastern Tuscarora Mountains (Figure  
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Figure 2.1. Shaded relief map of the Basin and Range province in northern Nevada and neighboring states, 
showing known geothermal systems. Red circles denote geothermal systems with temperatures greater than 
150°C. Yellow circles denote geothermal systems with temperatures greater than 99°C and less than 150°C. 
Faulds et al. (2004) recognized that geothermal systems cluster in northeast-trending belts, including the 
informally named Humboldt and Black Rock geothermal belts. High temperature geothermal systems 
within the Humboldt geothermal belt include: BR/DP, Bradys/Desert Peak; BW, Beowawe; CL, Carson 
Lake; CO, Colado; DA, Darrough’s; DV, Dixie Valley; HW, Humboldt Wells; MH, McGinniss Hills; RA, 
Raft River; RE, Reese River; SL, Soda Lake; SS, Sulphur Springs; SW, Salt Wells. 

2.2). Hot springs, abundant sinter, and silica-cemented alluvium occur along Hot Creek. 

The most prominent geothermal surface feature is a broad silica sinter terrace ~700 m 

long and ~260 m wide. The sinter terrace is inactive and perched ~10 m above the Hot 

Creek drainage (Figure 2.3).  A tight cluster of >15 boiling springs and fumaroles 

actively precipitate travertine, sinter, and sulfur (Sibbett, 1982) and lie ~400 m north-

northeast of the inactive sinter terrace. Minor hydrous silica veining and veinlets cut 

Miocene lava flows proximal to the hot springs. Isolated silica-cemented alluvium is 

observed in patches subparallel to the Hot Creek drainage.  

The thermal anomaly is confined to the area of surface alteration and hot spring 

activity within the Hot Creek drainage. Extensive exploration of the geothermal system 

from 1978-1981 included the drilling of 32 temperature gradient holes peripheral to and  
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Figure 2.2. Aerial image showing the study area outlined in white, approximate extent of the northeastern 
Tuscarora Mountains outlined by the dashed yellow line, surficial hydrothermal alteration of the 
geothermal system, and major physiographic features. 
 
within the known thermal anomaly. Warm (~40° C) water encountered in several 

gradient holes in northern Independence Valley appears to be outflow from the Tuscarora 

geothermal field (Pilkington, 1981). Silica-cemented alluvium mapped to the southeast of 

the sinter terrace also suggests that shallow outflow from the geothermal system has 

migrated toward Independence Valley. Exploration drilling has identified no other 
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thermal anomalies in the northeastern Tuscarora Mountains or northern Independence 

Valley. 

Construction of an 18 MWe gross capacity geothermal power plant at Tuscarora 

was completed by Ormat Technologies, Inc. in 2011. The power plant and four closely 

spaced geothermal production wells are located at the south end of the ancient sinter 

terrace (Figure 2.3).  A maximum temperature of 170 °C at a depth of 899 m (2950 ft) 

was reported from a test well at the south end of the sinter terrace (Goranson, 2005). At 

present, geothermal production is from fractured Paleozoic siliciclastic rocks and 

dolomite at ~1430 m depth.  

The geologic setting and geochemical data show no evidence of a shallow 

magmatic heat source at Tuscarora. The most recent volcanism in the region is late 

Miocene (Coats, 1987; Shoemaker, 2004) and thus is not a heat source for the active 

geothermal system. Similarly, the geochemistry of geothermal fluid points to a meteoric 

origin rather than a magmatic origin.  δD – δ18O results for hot and cold springs in the 

Tuscarora area plot near the meteoric water line (Figure 2.4),  consistent with values for 

such water in northern Nevada (Bowman and Cole, 1982). Slight deviations in δD and 

δ18O values for hot spring water away from the meteoric water line are explained by 

evaporation and/or low temperature isotopic exchange with carbonate rocks in the 

basement. A comparison of δD and δ18O values from hot and cold springs in the 

Tuscarora area shows that geothermal fluids correlate with cold springs to the west and 

southeast of the geothermal area and not with springs to the north (Bowman and Cole, 

1982). Thus, recharge was inferred to be either from the Independence Mountains to the 

southeast or from the Tuscarora Mountains to the west of the geothermal area. It is 
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Figure 2.3. Oblique aerial view of the Tuscarora geothermal area with major surface features highlighted and labeled. Relief is shown with three times 
vertical exaggeration to emphasize the elevation contrast between the south sinter terrace and present Hot Creek drainage.
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important to note that stable isotopic data cannot delineate a definitive geothermal heat 

source. However, the data from Tuscarora do not indicate a magmatic contribution to the 

geothermal fluid. 

Trace element geochemistry can, in some cases, be used to distinguish amagmatic 

from magmatic geothermal systems in the Great Basin. However, the existing data from 

Tuscarora do not clearly demonstrate either a magmatic or amagmatic signature. For 

geothermal systems with Cl concentrations of 102–103 ppm, ratios of Li-Cl and B-Cl 

show distinguishable divergent trends for amagmatic and magmatic systems (Arehart et 

al., 2003). At Tuscarora reported Cl concentrations of geothermal fluids range from 6–26 

ppm (Bowman and Cole, 1982) and are therefore too low to fit a meaningful trend. The 

combined geologic, isotopic, and trace element data provide no evidence for a magmatic 

heat source driving the Tuscarora geothermal system.  

 
Figure 2.4. δDwater versus δ18Owater values for hot and cold springs from the Tuscarora study area, reported 
by Bowman and Cole (1982), are compared with the isotopic fields for ocean waters, magmatic waters, 
metamorphic waters, and some connate waters. The connate and metamorphic water fields are from Hoefs 
(2009). The magmatic water field is after Sheppard (1986). 
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3. Stratigraphic Framework 

The northeastern Tuscarora Mountains and adjacent northern Independence 

Valley are composed of Paleozoic metasedimentary basement, Eocene to Miocene 

volcanic and sedimentary rocks, late Miocene-Pliocene to Quaternary alluvium, and 

Quaternary geothermal deposits (Figures 3.1 & 3.2; Plate 1) (Appendix A).  Basement in 

the northeastern Tuscarora Mountains is concealed by Eocene and younger strata. 

However, siliciclastic and carbonate rocks intercepted in geothermal drill holes correlate 

with Paleozoic units of the Independence and Bull Run Mountains. 

The Independence and Bull Run Mountains are dominantly composed of 

Paleozoic and minor Proterozoic metasedimentary rocks of the Golconda and Roberts 

Mountains allochthons (Miller et al., 1984; Ehman and Clark, 1986; Coats, 1987). The 

Roberts Mountains allochthon in the northern Independence Mountains consists of chert 

and limestone of the Ordovician Snow Canyon Formation and the massive Ordovician 

McAffee Quartzite, regionally correlated with the Valmy Formation (Muntean and 

Henry, 2006). The only exposure of these rocks within the study area is isoclinally folded 

bedded chert of the Snow Canyon Formation east of Harrington Creek (Plate 1).  These 

units were emplaced onto the edge of the North American continental shelf during the 

late Devonian-early Mississippian Antler orogeny along the Roberts Mountains thrust 

(Johnson and Pendergast, 1981). Following the Antler orogeny, the Roberts Mountains 

allochthon was partially eroded, shedding sediments westward onto the continental 

margin from the Devonian to early Permian. Regional contraction resumed with the late 

Permian-early Triassic Sonoma orogeny, which thrust shelf- and slope-facies sedimentary 

rocks of the Golconda allochthon southeast and east, over Devonian and older rocks of the 
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Figure 3.1. Generalized geologic map of the Tuscarora geothermal area, showing major groups of 
stratigraphic units (simplified from Plate 1).
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Roberts Mountains allochthon. In the northern Independence Mountains, the Golconda 

allochthon consists of highly deformed and thrust-bounded sequences of siltstone, 

argillite, calcareous sandstone, and metabasalt of the late Devonian to early Permian 

Schoonover Formation (Fagan, 1968; Miller et al., 1984). Shale subcrop of the 

Schoonover Formation is identified in the northeastern-most part of the Tuscarora area.  

Eocene to early Miocene volcanic and sedimentary rocks dominate the Tuscarora 

area. Most of the Tertiary section is composed of Eocene rocks derived from the 

Tuscarora volcanic field, erupted during a brief period of intense andesitic to rhyolitic 

volcanism from 40.0–39.3 Ma (Berger et al., 1991; Henry et al., 1999). The northern 

Tuscarora volcanic field is dominated by rhyolitic lithic tuff of the late Eocene Big 

Cottonwood Canyon caldera (Figures 3.2 and 3.3). This intracaldera tuff crops out in the 

western half of the map area and is encountered in wells within the geothermal field. 

Within the intracaldera tuff, intervals of hetero-lithic, largely basement-derived breccia 

>300 m thick encountered in drill holes HSS-2 and HSS-3 ~750 m beneath the hot 

springs (Plate 1) are interpreted to be intracaldera collapse breccia, deposited proximal to 

the inner caldera margin. Intracaldera mesobreccias consist of andesite, dacite, and 

basement-derived metasedimentary clasts ranging from millimeters to several meters in 

diameter in a quartz-rich fine-grained clastic matrix. The proportion of basement-derived 

metasedimentary rocks in these breccia deposits ranges from 5–95%. In addition to these 

hetero-lithic mesobreccia deposits, blocks of megabreccia, consisting entirely of 

Paleozoic metasedimentary rocks up to 73 m in diameter, have been penetrated by wells. 

Andesite and dacite flows and domes overlie the intracaldera tuff, though the thickness  
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Figure 3.2. Generalized stratigraphic column of the northeastern Tuscarora Mountains illustrating cross-
cutting relationships, angular unconformities, and approximate degrees of tilting. Lithologic units in 
ascending order: Pu-undivided Paleozoic metasedimentary rocks; Ms-Schoonover Formation; MBX-
basement-derived lenses of intracaldera megabreccia. Tct-tuff of Big Cottonwood Canyon caldera; Te-
undivided dacite and andesite of the Tuscarora volcanic field; Tao-porphyritic andesite; Tn-porphyritic 
andesite; Tsa-porphyritic  andesite; Ts-intercalated siltstone; Tsd-porphyritic dacite; Tr-undivided 
porphyritic andesite, dacite, and rhyolite intrusions; Tst-tuffaceous sedimentary rocks of Chicken Creek; 
Tdf-porphyritic rhyolite, correlative with the Jarbidge Rhyolite (Henry et al., 2011); Tvt-glassy porphyritic 
dacite flows; Taf-glassy sparsely porphyritic dacite; Q/T fans-unconsolidated alluvial fans and basin-fill 
deposits undivided. 
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and lateral extent of these lavas is highly variable and poorly constrained. Porphyritic 

dacite and rhyolite intrusions ≤ 150 m thick cross-cut the lithic tuff, hetero-lithic breccias, 

and metasedimentary basement. 

Overlying the igneous rocks of the Tuscarora volcanic field in slight (5°-15°) 

angular unconformity is a 300 m thick section of poorly to moderately indurated 

tuffaceous siltstone and sandstone containing sparse lenses of poorly sorted sand-pebble 

conglomerate, informally referred to in this study as the Chicken Creek unit (Figure 3.2). 

Where andesite and dacite flows and domes are absent, the Chicken Creek unit lies 

directly on the tuff of Big Cottonwood Canyon caldera. Overlying and underlying 

volcanic strata bracket the age of this sedimentary section to >16.15 Ma and <39.3 Ma. 

Middle Miocene rhyolite and dacite flows overlie the sedimentary section. A 

distinct package of sheet-like rhyolite flows ~120 m thick is widespread over the study 

area and is correlated with the Jarbidge Rhyolite (Figure 3.2). This rhyolite is grayish-

pink and coarsely porphyritic, containing 2-5% sanidine phenocrysts up to 8 mm in 

diameter. Sanidine from this unit in the western portion of the study area yielded an 

40Ar/39Ar age of 16.15 ± 0.02 Ma (Henry et al., 2011) (Plate 1, sample NV-0190). The 

Jarbidge Rhyolite is widespread over northern Elko County and associated with regional 

bimodal volcanism related to the inception of the Yellowstone mantle plume in the 

Oregon-Idaho-Nevada border area (Brueseke et al., 2008; Coble and Mahood, 2012). The 

rhyolite is overlain by erosional remnants of glassy dacite flows. 

Quaternary and possibly late Tertiary alluvium and fluvial deposits overlie the 

Eocene to Miocene strata (Figure 3.2). Coarse unconsolidated deposits dominated by 

well-rounded quartzite cobbles and boulders form broad surfaces of Quaternary or  
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Figure 3.3. Generalized geologic map of the Tuscarora volcanic field overlain on a colored shaded relief 
map, emphasizing the extent of the Big Cottonwood Canyon caldera. The northeastern caldera margin is 
inferred from well data within the geothermal area. Compiled from Coats (1987), Henry et al. (1999), 
Adams and Sawyer (1999), and this study. 
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possibly late Miocene-Pliocene age. These surfaces are gently tilted and do not conform 

to the present drainage pattern. Quartzite clasts may be derived from the McAfee 

Quartzite, which is exposed over tens of square kilometers in the northern Independence 

Mountains. Well-rounded quartzite cobbles and boulders are reworked into younger 

Quaternary alluvial fans around the northern edge of Independence Valley. Small alluvial 

fans flank narrow (<400 m) drainages within Tertiary bedrock of the northeastern 

Tuscarora Mountains. The northern Independence Valley is covered entirely by an active 

alluvial fan which originates at the mouth of Harrington Creek and widens toward the 

South Fork of the Owyhee River.   

Within the geothermal area, silica sinter deposits mantle Quaternary alluvium and 

siltstone of the Chicken Creek unit. Southeast of the power plant, an older inactive sinter 

deposit is overlain by late Pleistocene alluvium, indicating prolonged geothermal activity 

in the area. The inactive south sinter terrace covers a gently west-facing slope above Hot 

Creek (Figure 2.3). Where undisturbed, the surface is moderately to densely vegetated. 

The terrace is dominantly chalcedonic sinter with isolated opaline sinter at the upper- and 

eastern-most part of the deposit. Maximum thickness of the deposit is ~10 m.  A cluster 

of >15 hot springs, located ~400 m north-northeast of the older sinter terrace, precipitate 

silica sinter in a low relief mound. This younger shield-shaped deposit is ~150 m in 

diameter, at least 3 m thick and overlies fluvial deposits of Hot Creek and Quaternary 

alluvium (Figure 3.4). In addition to these large surface deposits, an apron of travertine 

~3 m in diameter is actively precipitated from an isolated warm spring, located 700 m 

southwest of the older sinter terrace. 
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Figure 3.4. Photographs of geothermal surface features A. Silica-cemented alluvium. B. Weathered 
chalcedonic sinter, typical of the older and inactive south sinter terrace. C. Silica sinter ~3 m thick, exposed 
where Hot Creek erodes the southern margin of the active sinter mound. The extent of sinter is demarcated 
by the sparse reddish vegetation. Red arrows indicate active hot springs and fumaroles. D. Hot springs (96° 
C) emanating from the younger sinter mound. 
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SUBSURFACE CONSTRAINTS 

Detailed geologic logging of core and cuttings from drill holes where integrated 

with geologic mapping to elucidate the subsurface distribution of strata and faults, as well 

as produce cross sections through the geothermal field (Plate 2). Well data were used to 

determine: 1) thickness of stratigraphic units, 2) dip maxima (in core), 3) composition of 

Eocene intracaldera deposits, and 4) depth to basement. Within the geothermal field, drill 

cuttings and core provide critical information about the Tertiary and Paleozoic bedrock, 

which is mainly concealed by alluvium and channel deposits of Hot Creek. 

Lithologic data from drill holes were projected onto cross sections C-C’, D-D’, 

and E-E’ (Figure 3.5) to constrain unit thickness and magnitude of tilting within fault 

blocks. Core samples yielded dip information from bedding in the Chicken Creek unit 

and compaction foliation in welded tuff. In core hole HSS-1, the sandstone of Chicken 

Creek dips 20°–30°. In core holes HSS-2 and HSS-3, fiamme in welded tuff dip 24°–65° 

(Figure 3.6). These dips are consistent with observations from surface mapping. Because 

drill core provides no azimuthal control, dip azimuths from nearby outcrops at the 

margins of the geothermal field were used to estimate the dip direction of strata 

encountered in drilling. Dip azimuths measured in outcrop to the east and west of the 

geothermal field range from east-northeast to east-southeast. Therefore, strata penetrated 

by wells in this area were presumed to dip easterly.   

Breccia textures and lithologic contacts revealed by drill core suggest that rocks 

of the Eocene Tuscarora volcanic field are intracaldera deposits of the Big Cottonwood 

Canyon caldera. A heterogeneous interval composed of lithic tuff, dacite, andesite, poly-

lithic breccia, and basement-derived metasedimentary rocks is encountered beneath an 
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undivided interval of Eocene dacite and andesite in all drill holes. This heterogeneous 

package of rocks lacks internal stratigraphy that can be correlated between drill holes, 

though it is consistently present beneath unit Te and the overlying Paleozoic basement.  

Core hole HSS-2 contains a 250 m interval of poly-lithic breccia, consisting of 

subangular clasts of porphyritic andesite and dacite, tuff, and basement clasts of weakly  

metamorphosed siltstone, argillite, and sandy limestone (Figure 3.7). Breccia clasts  

 

Figure 3.5. Map of the geothermal well field highlighting the location of core holes in green and rotary 
drill holes in black outline. Drill holes are annotated with depth to basement shown in meters. 
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generally range in size from 1 mm to 1 m, with rare clasts > 1 m in diameter (as 

penetrated by drill holes 51-09, 53-08, 66-05, HSS-2, and HSS-3). The ratio of volcanic 

clasts to basement-derived metasedimentary clasts varies from 10:1 to 1:10. The 

mesobreccia is well-cemented by a fine-grained clastic matrix and shows no evidence for 

greater primary permeability (e.g. hydrothermal alteration) than the overlying volcanic 

units. 

 

Figure 3.6. Photo of core from drill hole HSS-2 at a depth of 645.5 m showing compaction foliation in 
welded lithic tuff of the Big Cottonwood Canyon caldera. Measurement of the angle of compaction 
foliation relative to the core axis is a proxy for the maximum tilt of unit Tct within this fault block.   

In addition to mesobreccia containing a significant proportion of basement-

derived metasedimentary clasts, blocks of basement-derived megabreccia are 
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encountered in four drill holes (Figure 3.8). Intervals of coherent Paleozoic sedimentary 

rocks range from 2 – 73 m in thickness and concordantly overlie Eocene welded tuff. 

Based on the relationships observed in core, the mesobreccia and megabreccia are 

interpreted to be intracaldera deposits, related to the eruption and collapse of the Big 

Cottonwood Canyon caldera ca 40.0 Ma. During eruption or possibly shortly after 

eruption, portions of the over-steepened caldera walls probably collapsed inwards, 

breaking apart and mixing with volcanic debris. Basement-derived blocks of megabreccia  

 

Figure 3.7. Photo of core from drill hole HSS-2 showing clast-supported heterolithic mesobreccia. Interval 
contains ~70% clasts of porphyritic intermediate volcanic rocks, ~20% basement-derived fine-grained 
metasedimentary rocks, and ~10% fine grained clastic matrix. Breccia is interpreted as an Eocene-age 
intracaldera collapse deposit of the Big Cottonwood Canyon caldera. 
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are observed elsewhere within the Big Cottonwood Canyon caldera. Geologic mapping 

within the Tuscarora volcanic field southwest of the geothermal area reveals megabreccia 

blocks >100 m in diameter composed of Paleozoic metasedimentary rocks at the southern 

margin of the Big Cottonwood Canyon caldera (Figure 3.3) (Coats, 1987; Henry et al., 

1999). 

The depth at which drill holes intersect Paleozoic metasedimentary basement and 

encounter no extrusive igneous rocks at greater depth varies from 505 to 1207 m in the 

vicinity of the geothermal field (Figure 3.5).  Factors that contribute to variability in 

depth to basement include paleotopography on the Paleozoic-Tertiary nonconformity and 

Cenozoic normal faulting. The presence of intracaldera deposits within the geothermal 

field suggests that the Paleozoic-Tertiary nonconformity encountered beneath these 

deposits is the gently dipping inner wall or floor of the Big Cottonwood Canyon caldera. 

The caldera in this area has been tilted eastward toward westerly-dipping normal faults, 

covered by younger lava flows and sedimentary rocks, and then cut by at least one 

generation of normal faults. Therefore, the Paleozoic-Tertiary nonconformity within the 

study area is complex. The intracaldera deposits of the Big Cottonwood Canyon caldera 

are mapped only to the west and southwest of the geothermal area (Figure 3.1). 

Consequently, the depth to Paleozoic basement within the study area is interpreted to be 

greater to the west, where intracaldera fill is probably much thicker. 
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Figure 3.8. Simplified down-hole lithologic logs of four boreholes that contain intervals of allochthonous Paleozoic 
metasedimentary basement within the Tertiary volcanic section. Photographs of core samples show Paleozoic rocks in 
concordant contact with lithic welded tuff. Thin drill-hole logs indicate rotary samples. Thick drill logs indicate core 
samples. Total depth in meters is at the bottom of each log. 
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4. Structural Framework 

With respect to Neogene extension, the major structural components of the study 

area include 1) an east-tilted half graben that comprises much of Independence Valley, 2) 

the west-dipping Independence and Bull Run Mountains range-front fault zones, and 3) 

in the vicinity of the geothermal system, several gently to moderately east- and west-

tilted fault blocks that are bound by primarily northerly striking normal faults and 

essentially link the Independence and Bull Run Mountains fault zones (Figure 4.1). 

Independence Valley is an east-tilted north-northeast-trending half-graben filled with 

sediments derived from the Tuscarora and Independence Mountains. This basin is 

bounded to the east by the west-dipping Independence Mountains fault zone, where 

scarps in Pleistocene alluvial fans indicate recent tectonism.  Regional gravity data 

suggest that the basin is approximately 1500 m deep at the center (Erwin, 1988). On the 

southwest side of Independence Valley a dense array of north-northeast-striking, east- 

and west-dipping faults in Pleistocene alluvial fan deposits is well defined near the town 

of Tuscarora (Figure 3.3) (Coats, 1968; Dohrenwend and Moring, 1991). The 

westernmost of these faults dip east, whereas the easternmost faults near the center of 

Independence Valley dip west (Henry et al., 1999). 

At the latitude of the geothermal system, the Independence Mountains fault zone 

juxtaposes east-tilted Miocene strata of the northeastern Tuscarora Mountains against 

complexly deformed Paleozoic basement of the Independence Mountains. Minimum 

offset on this segment of the fault is ~2000 m. Cumulative displacement across the 

Independence Mountains fault zone diminishes to the north, terminating in the Bull Run 

basin ~14 km east-northeast of the geothermal field. 
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The Bull Run Mountains range-front fault zone also dips west and juxtaposes 

Miocene lavas and Quaternary alluvium in the hanging wall against pre-Tertiary 

basement in the footwall. Offset across this major range-bounding fault zone is probably 

several thousand meters along the west flank of the Bull Run Mountains. At the southern 

tip of the Bull Run Mountains, the Bull Run fault zone breaks into a series of smaller 

east- and west-dipping faults with diminishing offset and topographic relief toward the 

south (Figure 4.1). 

 A broad (~10 km wide) step-over or relay ramp (cf., Larsen, 1988) lies between 

the overlapping ends of the west-dipping Bull Run and Independence Mountains fault 

zones and is dominated by small northerly striking faults (Figures 3.3 and 4.1). 

Subsidiary faults within the step-over subparallel the major bounding faults, and thus do 

not mechanically link the Bull Run and Independence Mountains fault zones, at least at 

the surface. Northeast-striking faults also occupy the relay ramp and are expressed 

mainly in pre-Miocene rocks (Ehman and Clark, 1986; Coats, 1987).  These northeast-

striking faults may be an expression of the Humboldt structural zone (Figure 1.1) and 

appear to mainly predate the northerly-striking range-bounding fault system.  The 

Tuscarora geothermal system resides in a zone of closely spaced northerly trending 

normal faults in the southern portion of the step-over. The Bull Run Mountains fault zone 

terminates southward ~5 km to the west of the Tuscarora geothermal area, whereas the 

Independence Mountains fault zone lies ~5 km to the east and dies out northward.  

Within the step-over, the geothermal system occupies a small accommodation 

zone (cf., Faulds and Varga, 1998), as evidenced by both east- and west-tilted fault 

blocks bounded by sets of oppositely dipping normal faults. Accommodation zones are 
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belts of overlapping normal faults. They may contain intermeshing, oppositely dipping 

fault sets or overlapping synthetic faults.  The change in fault polarity across an 

accommodation zone is commonly accompanied by a reversal of fault-block tilts, 

resulting in an extensional fold, with extensional anticlines developing where inward-

dipping fault systems overlap (e.g. Faulds, 1996; Faulds and Varga, 1998).  In the 

Tuscarora geothermal area, overlapping northerly striking, east- and west-dipping faults 

form an accommodation zone.  In the vicinity of the sinter, hot springs, and production 

wells, however, all fault blocks are tilted gently to moderately east. Directly west and 

north of the geothermal activity, however, fault blocks form an extensional anticline, with 

west- and east-dipping normal faults bounding east- and west-tilted blocks, respectively 

(Figure 3.1; Plates 1 and 2).  The following sections describe in greater detail the 

geometry, kinematics, and timing of faulting within the accommodation zone that hosts 

the geothermal system. 

GEOMETRY OF FAULTING 

As introduced above, the Tuscarora geothermal area lies within an ~10 km wide 

zone of structural overlap between two major northerly striking range-bounding fault 

zones, including the northward-terminating Independence Mountains fault zone to the 

east and southward-terminating Bull Run Mountains fault system to the west (Figure 4.1). 

Directly west of the geothermal area, oppositely dipping fault splays of the Bull Run 

Mountains fault system form a prominent horst block, exposing the tuff of the Big 

Cottonwood Canyon caldera (Figure 3.1 and Plate 1). The east side of the horst block is 

bounded by a northerly striking steeply east-dipping normal fault, informally referred to 

here as the Cottonwood Peak fault. A prominent west-dipping splay of the Bull Run 
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Mountains fault zone, informally named the Skull Creek fault, bounds the west side of 

the fault block.   

 

Figure 4.1. Shaded relief map of major faults involving Eocene and younger rocks near the Tuscarora 
geothermal field. Yellow line denotes the Tuscarora study area boundary. Faults are approximately located 
from Ehman and Clark (1986), Coats (1987), Adams and Sawyer (1999), and this study.  
 

Between the Cottonwood Peak fault and Independence Mountains fault zone, an 

array of closely-spaced small-offset faults strikes north-northwest to north-northeast 

(Figures 3.1 and 4.2) and dip both east and west. These oppositely dipping faults define 
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the northerly trending accommodation zone.  Individual faults within this area are mostly 

< 3 km long and have maximum offsets of < 350 m. To the west of the primary surface 

expressions of the geothermal system (e.g., sinter terrace and hot springs), these small 

faults mainly dip east and southeast. To the east of the geothermal area, small normal 

faults mainly dip west and northwest. Thus, the geothermal area occupies the axial part of 

the northerly trending accommodation zone, where these east- and west-dipping fault sets 

overlap (Figure 4.3).  

 

The accommodation zone is essentially bounded to the west by the east-dipping 

Cottonwood Peak fault and to the east by the west-dipping Independence Mountains fault 

zone, whereas its extent to the north and south is less well defined. Inward-dipping 

northerly striking normal fault sets persist several kilometers beyond the northern 

boundary of the study area but not as far as the Bull Run basin (Ehman and Clark, 1986) 

(Figure 4.1), suggesting that the accommodation zone dies out in the northernmost part of 

the northeastern Tuscarora Mountains.  Faults in the southeastern portion of the study 

area are concealed by Holocene alluvial fans of Harrington Creek and the Independence 

Figure 4.2. Rose diagram of all fault 
plane strike directions measured within 
the study area, showing that faults 
mainly strike northerly. Largest petal 
represents 30% of the total dataset. 



34 
 

Mountains, and thus the geometry and extent of the accommodation zone here are not 

precisely known.  

The axial part of the accommodation zone is segmented at abrupt lateral steps 

where short faults of opposite polarity terminate in the same area, with strain stepping 

over to an adjacent set. The accommodation zone can be further described in terms of the 

position of the axial part, with respect to the bounding faults, and fault-block tilt domains. 

The northern portion of the study area is characterized by fault-blocks tilted 

approximately ~9°–31° away from the hinge zone in an extensional anticline (Figures 3.1 

and 4.4).  

 

Figure 4.3. Fault map of the study area, with hachured area denoting the change in fault polarity from east- 
to west-dipping faults. The hinge line of an extensional anticline (heavy dashed line) is developed in the 
northern part of the accommodation zone. Quaternary valley fill conceals faults in the southeastern portion 
of the study area, thereby preventing projection of the accommodation zone to the south.
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East-dipping normal faults dominate the northern part of the accommodation zone 

such that the hinge zone lies near the Independence Mountains fault zone (Figure 4.3). In 

the area of geothermal activity, geologic cross sections (Plate 2) reveal a pattern of 

oppositely dipping overlapping fault sets similar to the northern segment of the 

accommodation zone. However, fault-blocks at the latitude of the geothermal field are all 

tilted easterly from ~10°–37° (Figure 4.4). At the eastern margin of the accommodation 

zone, a syncline has developed where strata within east-tilted fault blocks dip moderately 

(~30°) west as a result of drag along the Independence Mountains fault zone. 

Within the geothermal field, two steeply west-dipping normal faults on the east 

side of Hot Creek localize geothermal upflow near the surface (Figure 3.5) (Plate 1). The 

older south sinter terrace is bounded upslope to the east by one of these west-dipping 

normal faults. The absence of sinter upslope of this fault trace suggests that hot water 

flowed out along this fault, precipitating subaerial silica sinter in the hanging wall down 

slope from the fault. At the north end of the geothermal field, two west-dipping, north-

northeast-striking normal faults intersect a north-northwest-striking, west-dipping normal 

fault. Boiling springs, fumaroles, and sinter occur in the mutual hanging wall of these 

intersecting faults. Geothermal features occur along the apparent traces of the north-

northeast-striking faults but are not observed along the trace of the north-northwest-

striking fault beyond the fault intersection area. 
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Figure 4.4. Geologic cross sections A-A’ (top) and C-C’ (bottom) based on detailed geologic mapping of the northeastern Tuscarora Mountains. The 
sections reveal an accommodation zone lying within the zone of overlap between two major normal fault zones: the Bull Run Mountains and Independence 
Mountains fault zones. The Skull Creek and Cottonwood Peak faults are splays of the Bull Run Mountains fault zone. In section A-A’, strata within the 
accommodation zone are tilted gently away from the hinge zone of the accommodation zone, forming an extensional anticline.
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FAULT KINEMATICS 

Kinematic analysis of fault slip data was undertaken to distinguish slip directions 

and infer both orientations of principal strain and stress axes.  Kinematic indicators, 

including slickenlines and Riedel shears (e.g. Petit, 1987), were used to determine slip 

sense on 30 fault surfaces from 25 localities (Figure 4.5a). The data show that the steeply 

dipping normal faults and a smaller population of dextral-normal faults characterize the 

Tuscarora geothermal area.  The mapped extent of dextral-normal faults is limited due to 

poor exposure. It appears that the dextral-normal faults involve only rocks older than 16.5 

Ma. 

 The kinematic data were then used to quantitatively determine the principal axes 

of extension and shortening, employing the method of Marrett and Allmendinger (1990). 

The orientation of fault planes and kinematic indicators together constitute a fault slip 

datum, which is converted to kinematic axes (P-shortening, T-extension, B-intermediate) 

(Figure 4.6b). Calculations of kinematic axes and mean principal strain axes for the entire 

dataset were performed using TectonicsFP 1.75, which calculates a linked Bingham 

distribution that essentially determines a best fit orientation for all fault slip data (Ortner 

et al., 2002).  

The kinematic data were inverted to determine the mean paleostress tensor by the 

Numerical Dynamic Analysis (NDA) method (Spang, 1972). The homogeneity of the 

dataset is tested by measuring the angular deviation of the calculated maximum shear 

stress from the observed slip lineation.  The fluctuation histogram summarizing deviation 

from the calculated maximum shear stress for the entire Tuscarora fault population shows 
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that the angular deviation of some of the fault data is greater than the maximum 20° 

expected in a fault population activated in the same stress field (Figure 4.5b) (Ortner et 

al., 2002). Sorting of this heterogeneous dataset yields a homogenous subgroup of 15 

faults for which all kinematic data are within 20° of the mean maximum shear stress 

(Figures 4.5d and 4.5e). The remaining PTB data are heterogeneous, and kinematic 

analyses suggest they do not represent a coherent fault population formed in a single 

stress field. The heterogeneity may be explained by a combination of the following 

factors: 1) pre-Miocene reorientation of some fault planes; 2) a change in the local stress 

field during the Eocene related to collapse and/or resurgence of the Big Cottonwood 

Canyon caldera; and 3) the subgroup of data is not large enough for recognition of  

multiple fault populations. 

The calculated mean principal stresses for the statistically coherent subgroup of 

15 faults are σ1 =312°/85°, σ2 =175°/04°, σ3 =085°/03° (Figure 4.5f). The computed 

orientations of σ1 and σ3 lie close to vertical and horizontal planes, respectively, in good 

agreement with the Cenozoic extensional stress regime. However, the trend of σ3 (085°) 

differs considerably from the Holocene northwest-trending least principal stress direction 

indicated by earthquake focal mechanism solutions (Smith et al., 2011), geodetic data 

(Hammond et al., 2011), and kinematic data (Zoback, 1989). The age of most fault slip 

data within the study area is constrained to < 16.1 Ma and, in a few cases, only 

constrained to < 40 Ma. Therefore, the stress inversion calculated from these data reflects 

a paleostress state averaged since the middle Miocene, which may not represent the 

Holocene stress field. Clockwise rotation of the least principal stress direction in northern 
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Figure 4.5. Kinematic data sorted into a statistically homogenous subgroup, following the method of Ortner et al. (2002). (a) Plot of all fault slip data 
(Angelier, 1994) with arrows indicating hanging wall slip direction. (b) Fluctuation histogram of all fault slip data showing calculated error between the 
measured shear stress vector and calculated mean resolved shear stress vector. Larger x-axis values indicate greater discrepancy between the measured 
lineation and the calculated mean shear stress vector. (c) Principal strain axes calculated for all fault slip data using a θ value of 24°, which is the angle 
between the fault plane and σ1. Red circle=P-axis=shortening. White square=B-axes=intermediate. Blue triangle=T-axis=extension. Larger symbols indicate 
calculated best fit principal strain axes for all 30 measurements of fault slip data. (d) Plot of fault surfaces showing hanging wall slip direction for a 
subpopulation of 15 faults identified based on the similarity of their kinematic axes. (e) Fluctuation histogram of shear stress vectors, demonstrating the 
statistical homogeneity of slip vectors used to define this homogenous fault subpopulation. (f) Principal strain axes calculated using a θ angle of 18° for this 
kinematically homogenous fault subpopulation.
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Nevada from west-southwest to northwest has occurred since the middle Miocene 

(Zoback and Thompson, 1978). The approximately east-west least principal paleostress 

direction at Tuscarora lies between  the  middle Miocene and Holocene least principal 

stress directions and may reflect a transitional stress regime. 

TIMING OF DEFORMATION 

An angular unconformity between Eocene rocks of the Tuscarora volcanic field 

and the overlying Chicken Creek unit suggests an episode of extension after ~40 Ma and 

before deposition of the Chicken Creek unit, no later then ~16 Ma.  Within the study 

area, the tuff of the Big Cottonwood Canyon caldera is tilted an average of 43°, whereas 

the average dip of the overlying Chicken Creek unit is 25° and are mostly < 37° (Figure 

4.6a). Several dips greater than 37° were recorded in the Chicken Creek unit near faults, 

where local drag appears to have contributed to steepening of strata. The 18° discrepancy 

between the average dips of these units is interpreted to represent extension and tilting 

that predate deposition of the Chicken Creek unit. A period of extension and basin 

formation post-dating Eocene volcanism and pre-dating mid-Miocene volcanism has also 

been recognized at Copper Basin (Henry et al., 2011) but is not widely documented 

elsewhere in northeastern Nevada.  Similar to the tuff of Big Cottonwood Canyon, lavas 

of the Tuscarora volcanic field dip more steeply on average than the Chicken Creek unit, 

though attitude data from flows are more widely scattered than data from welded tuff. 

The wide range of flow orientations observed in the lavas of the Tuscarora volcanic field 

is in part attributed to deposition-related variability in primary flow orientation. Flow 

fronts and margins, the flanks of domes, and lavas deposited on irregular 
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paleotopography could produce moderate to steeply dipping flow foliations unrelated to 

any tectonic tilting.   

 
Figure 4.6. Left column shows poles to bedding and layering, respectively, for sedimentary and volcanic units plotted 
on lower hemisphere equal-area projections. (a) Poles to bedding in Oligocene (?) sedimentary rocks of the Chicken 
Creek unit (Tst  in Plate 1); (b) Poles to flow foliation in Eocene dacite and andesite flows (Te, Tsa, Tsd, Tao, Tn, and 
Ti in Plate 1); (c) Poles to compaction foliation in 40.0 Ma welded tuff of Big Cottonwood Canyon caldera (Tct in Plate 
1). Shaded contour intervals at 2, 4, 6, 8, and 12% of data per 1% area. Data points are shown as black dots. Right 
column shows dip values displayed as rose plots in 10° increments from 0° (horizontal) to 90° (vertical). For both the 
stereonets and rose diagrams, the number of measurements is shown in parentheses. 
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The accommodation zone is defined mainly by steeply dipping (>60°) normal 

faults that have been active since ~16 Ma, though structural relations described above 

combined with 40Ar/39Ar geochronologic data (Henry et al., 1999; Henry et al., 2011) 

indicate that Tuscarora has undergone extension since the late Eocene. Flows of the 

Jarbidge Rhyolite are tilted up to ~37° east, indicating significant extension since ~16 

Ma. Late Miocene-Pliocene to early Pleistocene fan deposits are tilted ~10°, suggesting 

that much of this extension occurred between the middle Miocene and Pliocene but also 

that some extension has continued since the latest Tertiary.  Evidence of on-going 

Quaternary deformation is abundant in the region (e.g. Independence Valley and Bull 

Run Mountains) but sparse in the northeastern Tuscarora Mountains. Within the study 

area a single probable north-northeast-trending Quaternary scarp was recognized adjacent 

to Hot Creek ~2 km south of the geothermal field.  This study does not resolve whether 

Cenozoic extension has been continuous or episodic. Observations from Tuscarora are 

compatible, however, with studies elsewhere in northern Nevada that document several 

pulses of extension from Eocene to present (e.g. Colgan and Henry, 2009). 
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5. Discussion 

STRUCTURAL CONTROLS ON GEOTHERMAL ACTIVITY 

 This study employed geologic mapping, structural analysis, and well data to better 

understand the geometry and kinematics of deformation in and around the Tuscarora 

geothermal field of northeastern Nevada. Two distinct settings at different scales appear 

to control the Tuscarora geothermal system. The regional structural setting is a 10 km-

wide complexly faulted left step or relay ramp (c.f., Larsen, 1988) in a range-bounding 

fault system. The Bull Run Mountains and Independence Mountains fault zones are the 

major fault segments that together form a semi-continuous system of west-dipping 

normal faults, kinematically linked by the broad step-over and relay ramp. Within the 

step-over, sets of east- and west-dipping normal faults overlap in a northerly trending 

accommodation zone (Figure 5.1). The distribution of hot wells at Tuscarora indicates 

that the geothermal system is restricted to the narrow (<1 km) axial part of the 

accommodation zone. Thus, the local structural control on geothermal activity is the 

accommodation zone, whereas the regional setting is characterized by the broad step-over 

and relay ramp. Previous work has shown that at least several other high temperature 

geothermal systems in the Great Basin are also characterized by more than one structural 

setting, including Brady’s, Reese River, Salt Wells, and possibly Steamboat (Faulds et 

al., 2011; Hinz et al., 2011b). 

Within the axial part of the accommodation zone, hot spring activity is most 

robust in the area with the greatest density of fault intersections. Boiling springs and 

active fumaroles are concentrated at the north end of the geothermal field, where three 

steeply dipping north-northeast-striking normal faults intersect a northwest-striking fault. 
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All four fault segments dip westerly, resulting in a complex southwest-plunging fault 

intersection that appears to localize outflow but may not control deeper upwelling in the 

geothermal system. 

 

Figure 5.1. Block diagram depicting an antithetic accommodation zone developed within a portion of a 
relay ramp between large synthetic normal faults. The antithetic accommodation zone is defined here by 
domains of oppositely-dipping faults and not the orientation of fault blocks. Red shading depicts 
structurally controlled pathways of geothermal up flow and outflow within the hinge zone of the 
accommodation zone. For clarity, oppositely dipping faults show only one generation of offset.  

Though surface out flow is greatest near this southwest-plunging fault 

intersection, geothermal production wells exploit an area dominated by north-northeast-

striking normal faults ~1.4 km to the south. The distribution of hot wells and 

hydrothermal alteration suggest that ascending fluids are focused along these north-

northeast-striking normal faults. Previous studies have shown that hydraulically 

conductive faults and fractures are commonly oriented approximately orthogonal to the 
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least principal stress direction (e.g. Barton et al., 1995; Faulds et al., 2006; Moeck et al., 

2009). Geodetic data, earthquake focal mechanism solutions, and kinematic data indicate 

approximately northwest-southeast-directed extension in northeastern Nevada at present 

(Zoback, 1989; Hammond et al., 2011; Smith et al., 2011). Assuming a direct relationship 

between the regional extension direction and the orientation of least principal stress 

within the geothermal field, steeply dipping northeast-striking faults are most favorably 

oriented for extension in the regional stress regime. Faults in the geothermal area strike 

north-northeast to northwest. Within this range of existing fault orientations, north-

northeast-striking faults are most favorably oriented for reactivation and dilation in the 

present stress regime. Accordingly, such faults host most of the geothermal activity, as 

evidenced by the distribution of hot springs, sinter, and production wells. Geothermal 

activity is notably sparse along north- and north-northwest-striking faults within the 

geothermal field. 

The absence of geothermal activity along large-offset faults within the Bull Run-

Independence Mountains fault system and localization in the axial part of an 

accommodation zone may be attributable to differing fault zone architectures. Fault 

planes with large magnitude offsets typically develop a core consisting of clay gouge, 

whereas fault planes with small offsets tend to be breccia and fracture-dominated (Caine 

et al., 1996). Gouge zones act as barriers to fluid flow across a fault, whereas brecciated 

damage zones promote fluid flow. At Tuscarora, the oppositely dipping normal fault sets 

that locally control the geothermal upwelling have relatively small offsets (<350 m) and 

are likely breccia-dominated. In contrast, the adjacent range-bounding fault zones are the 

focus of large magnitude strain, with offsets of several kilometers, and thus are more 
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likely to be gouge-dominant and inhibit fluid flow. Additionally, overlapping faults 

within accommodation zones form a greater density of fault intersections as compared 

with the mid-segments of major normal faults. 

STRUCTURAL PERMEABILITY IN ACCOMMODATION ZONES 

Within the accommodation zone steeply east- and west-dipping normal faults 

form complex fault intersections and areas of both increased fracture density and bulk 

permeability parallel to σ2 (e.g. Sibson, 2000; Ferrill et al., 2000). Alternating 

reactivation of crossing normal faults accommodates offsets of earlier fault segments and 

results in the formation of new fault intersections (Figure 5.2) (Horsfield, 1980; Ferrill et 

al., 2000). Existing fault segments tend to be reactivated because fault zones are weaker 

than the surrounding rock and thus fail under lower differential stress (Morris et al., 

1996). Additionally, field examples of conjugate normal faults reveal that new fault 

intersections are generated where offset segments are reactivated and propagate back 

across the cross-cutting faults, leading to new fault segments (Ferrill et al., 2009). 

Permeability in this setting is maintained both by the reactivation of preexisting faults 

and stress concentrated near fault tip lines (Curewitz and Karson, 1997; Gupta and 

Scholz, 2000). In zones of low intrinsic permeability, such as metasedimentary basement 

rocks at Tuscarora, fluid flow may be enhanced in the σ2-direction, parallel to the 

intersection of faults and fractures (Sibson, 1996). Additionally, cross-fault fluid flow is 

enabled by interconnected fault damage zones and fracture networks.  

Vertical permeability of the geothermal reservoir is probably maintained by 

abundant interconnected fault zones and fracture networks in the axial part of the 

accommodation zone, involving many inward-dipping faults.  
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Figure 5.2. Alternating activity of oppositely dipping faults, showing the reactivation of shallow fault 
segments and formation of new fault segments. Repeated reactivation and fault propagation generates a 
high density of fault intersections in the vicinity of crossing faults (Adapted from Ferrill et al., 2000). 

Here, fault intersections occur over a wide range (< 1 – ~3 km) of depths in a relatively 

narrow (<2 km), steeply-plunging zone presumably characterized by dense fracture 

networks and complex fault damage zones (Figure 5.3). Thus, a steeply-plunging zone of 

structurally-maintained permeability may facilitate upwelling of hydrothermal fluids 

from relatively deep (~3 km) levels in the axial part of the accommodation zone.  

Fluid flow to the surface, however, is focused along steeply-dipping normal 

faults, whereas geothermal production wells may exploit a more moderately-dipping fault 

near the uppermost part of the inferred high permeability zone. Steeply west-dipping 

normal faults that localize the geothermal surface expression are intersected by 

geothermal wells 87-05 and 65-08 within 50 m of the surface, or not at all (Figure 4.4; 

Plate 2). However, these wells may exploit hydraulically-conductive fractures in the 
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damage zone of a moderately (~55°) west-dipping normal fault that projects to the 

surface ~2 km to the east (Figure 5.3). 

Alternatively, normal faults in the Hot Creek area may have very steep dips (~80°) 

such that the geothermal wells exploit dilatant fractures within a footwall breccia zone of 

these faults. Such dilatant footwall breccia zones were described by Caine et al. (2010) 

along the Stillwater normal fault in western Nevada and shown to host hydrothermal 

activity. Very steeply dipping normal faults within accommodation zones are interpreted 

in seismic reflection profiles from basins of the Malawi (Flannery and Rosendahl, 1990) 

and Rio Grande rifts (Russell and Snelson, 1994). However, further interpretation is 

hindered by the lack of precise knowledge of fault dips in the vicinity of the geothermal 

field.  

 

Figure 5.3. Conceptual model of the geothermal system shown in cross section. The geothermal reservoir 
lies within a zone of abundant fault intersections where inward-dipping sets of normal faults interact in the 
axial part of the accommodation zone. Away from the zone of abundant fault intersections, fluid-flow is 
restricted to discrete fault zones. Moderate argillic alteration along fault zones in Tertiary volcanic and 
tuffaceous sedimentary rocks is envisioned to further restrict up-flow paths. 
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Regardless of whether production wells currently exploit a moderately or steeply 

dipping fault zone, the down-dip projection of faults identified by this study suggests that 

the main geothermal reservoir lies to the west of the geothermal surface expression and at 

greater depth (Figure 5.3). The highest temperatures and greater permeability within the 

Tuscarora geothermal field are inferred to be ~1 km west of the geothermal surface 

expression along north-northeast-striking faults at 2 – 3 km depth. To further constrain 

the location of high-permeability fault intersections within the accommodation zone, 

future exploration efforts should seek to better constrain the orientations of both east- and 

west-dipping faults at the margins of the geothermal field. 

Additional controls on the extent of the geothermal reservoir within the 

accommodation zone may include the depth and host-rock lithology of the fracture 

network. East- and west-dipping normal faults intersect beneath the geothermal 

production area in metasedimentary Paleozoic basement at depths of ~1.5 km to ~3 km 

(e.g. Figure 4.4) (Plate 2). However, shallower (<500 m) fault intersections occur in 

volcanic rocks ~1.5 km south of the production area but are not associated with 

geothermal activity. 

CALDERA MARGIN STRUCTURES AND IMPLICATIONS FOR PERMEABILITY 

Voluminous caldera collapse breccias encountered within the geothermal field 

coupled with geologic mapping of thick (>2.5 km) intracaldera tuff ~2 km west of the 

geothermal system strongly suggest that the northeastern margin of the Big Cottonwood 

Canyon caldera lies beneath younger sedimentary and volcanic strata in the northeastern 

Tuscarora Mountains (Figures 3.3 and 4.4). Though caldera margin structures (e.g. ring 

fault network) have not been delineated at Tuscarora, such features probably lie in the 
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vicinity of the geothermal field but may be covered by younger strata.  A ring fracture 

zone may enhance permeability in the Paleozoic basement near the Paleozoic-Tertiary 

nonconformity within the geothermal field. Analog modeling of caldera collapse 

structures indicate that strain is focused in syncollapse fault networks at the margins of an 

evacuated magma chamber (Roche et al., 2000; Holohan et al., 2008). Modeled ring fault 

networks dip steeply (>70°) and may be characterized by outward-dipping reverse faults 

and/or inward-dipping normal faults. These experimental results are compatible with 

field observations from the well exposed margins and ring fault networks of well studied 

calderas (e.g., John, 1995; Lipman, 1976). Fault breccia generated along ring faults 

during caldera subsidence would have enhanced permeability in Paleozoic basement 

rocks and may have in part localized hydrothermal fluid flow (e.g. Rytuba, 1994). The 

Big Cottonwood Canyon caldera is tilted ~45° east-northeast, and thus the inferred ring 

faults have probably been rotated to moderate westerly dips. Whether the inferred Eocene 

caldera ring fracture network actually enhances permeability within the geothermal 

reservoir at present is not easily resolved.  It is notable, however, that geothermal activity 

appears to be restricted to the region where the inferred caldera margin intersects the 

axial part of the accommodation zone.  Thus, the influence of Eocene structures on the 

Tuscarora geothermal system should not be ruled out. 

GEOTHERMAL ACTIVITY IN BROAD STEP-OVERS 

Step-overs are the most common structural setting for geothermal activity in the 

Great Basin (Faulds et al. 2011), yet the details of most individual systems remain poorly 

understood. The geometry of three broad (>5 km) step-overs that host geothermal activity 

identified by Faulds et al. (2011) are examined here (Figure 5.4) and compared with the 
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fault system at Tuscarora. The three fault systems and attendant geothermal systems are: 

1) Winter Rim fault zone/Summer Lake Hot Springs; 2) Steens Mountain fault 

zone/Alvord and Borax Lake Hot Springs; 3) Kawich-Hot Creek fault zone/Hot Creek 

Ranch springs. Like the Bull Run-Independence Mountains fault system, these three fault 

systems are defined by sub-parallel, synthetically-dipping major normal fault zones 

active in the Quaternary. The total length of each fault system is between 50 and 110 km 

(Sawyer and Anderson, 1998; Personious, 2002). Unlike the Bull Run-Independence 

Mountains fault system, major segments of both the Winter Rim and Kawich-Hot Creek 

systems are physically linked by smaller faults striking oblique or orthogonal to the 

greater fault system (Figures 5.4a and 5.4b). Minimal overlap is observed between major 

segments of the Winter Rim fault system, whereas segments of the Kawich-Hot Creek 

fault system appear to underlap. In contrast, major segments of the Steens Mountain fault 

system exhibit ~15 km of overlap, forming a south-tilted relay ramp, mirroring the 

Independence-Bull Run Mountains fault system. Unlike the Independence-Bull Run 

Mountains step-over, the Steens Mountain relay ramp is cut by a series of minor faults, 

which may provide hard linkage between major fault segments (Figure 5.4c). Quaternary 

faults are abundant near the southern termination of the eastern segment of the Steens 

Mountain fault system, whereas Quaternary faulting at Tuscarora is mainly documented 

at the major range fronts.      

The location of geothermal activity is different within each of the broad step-

overs described here but is consistently associated with Quaternary faults. Therefore, 

detailed characterization of subsidiary structures is necessary to explore effectively 

within this common structural setting. For example, hot springs at Summer Lake are 
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adjacent to small faults that strike orthogonal to and link major segments of the Winter 

Rim fault system. The springs lie in the middle of the step, approximately equidistant 

from the major fault segments. At Hot Creek Ranch, boiling springs emanate at the 

abrupt termination of several faults that together define the southern segment of the step-

over in the Kawich-Hot Creek fault system. Alvord and Borax Lake Hot Springs both lie 

at the periphery of a broad step-over in the Steens Mountain fault system. A small (<1 

km) step-over hosts the Alvord Hot Springs in the hanging wall of the eastern segment of 

the Steens Mountain fault system. Borax Lake Hot Springs occur along a series of small 

en echelon normal faults (Fairley and Hinds, 2004) that lie between the major fault 

segments of the broad right step in the Steens Mountain fault system. These examples 

demonstrate that geothermal activity within and adjacent to broad fault step-overs can be 

further characterized in terms of the geometry of the step-over (e.g. segment overlap and 

type of linkage) and subsidiary structural settings within each step-over (e.g. fault 

termination, small step-over).  

The recognition of subsidiary structural settings within broad step-over regions or 

relay ramps, such as the northeastern Tuscarora Mountains, may help guide geothermal 

exploration in extended terrranes.  Broad step-overs in large normal fault systems are 

commonly easy to identify by bends or embayments in range fronts. However, 

geothermal activity typically occupies only a small portion of these broad step-over 

regions. Geologic mapping of bedrock and, in some cases, alluvial cover can be an 

effective method to characterize subsidiary structures that focus up-flow and optimize the 

placement of drill holes, particularly when integrated with methods such as shallow 

temperature probes, geophysical surveys, and slip and dilation tendency analysis. 
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Figure 5.4. Shaded relief maps showing examples of geothermal systems (red shading) that lie within 
broad step-overs in major Quaternary normal fault systems (black lines). Dashed yellow lines show the 
approximate distance between major fault segments. A. Summer Lake Hot Springs lie within the zone of 
linkage between major normal fault segments where short, closely spaced faults strike perpendicular to the 
major fault segments. B. Hot springs at Hot Creek Ranch emanate at the northern termination of the 
southern segment of a right-stepping normal fault system. C. Alvord Hot Springs lie within a small (<1 km) 
left step-over formed by normal faults that define the eastern segment of a broad right step-over. Up flow at 
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Borax Lake Hot Springs occurs along a fault that lies between the major fault segments of the broad right 
step.  

 

IMPLICATIONS FOR GEOTHERMAL EXPLORATION IN NORTHEAST NEVADA 

Insights gained from detailed geologic mapping of the relatively well exposed 

relay ramp and accommodation zone in the northeastern Tuscarora Mountains may 

benefit geothermal exploration in areas of northeastern Nevada where bedrock and 

potential geothermal systems are concealed by basin fill. Broad step-overs in major 

northerly trending faults systems abound in northeastern Nevada and have been shown by 

this study and others (e.g. Faulds et al., 2011) to host geothermal activity. However, 

alluvial cover commonly prevents direct observation of the subsidiary structures (i.e. 

small faults and extensional folds) within these step-over regions. Where geophysical 

data permit interpretation of subsurface geology, exploration efforts in step-over regions 

should focus on areas with the highest density of fault interactions and target north-

northeast-striking faults, which are optimally oriented for extension in the regional stress 

field.  

Many high-temperature Great Basin geothermal systems have been shown to be 

associated with Quaternary faults (Koenig and McNitt, 1983; Bell and Ramelli, 2007). 

However, evidence for Quaternary faulting (e.g. scarps) is scarce in the vicinity of the 

Tuscarora geothermal system. Thus, compilations of Quaternary faults, commonly 

included in GIS-based studies of geothermal favorability (e.g. Coolbaugh et al., 2003; 

Zehner et al., 2009), do not include the Tuscarora geothermal area. High-temperature 

geothermal systems in northeastern Nevada, including Beowawe and Humboldt Wells, 
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are spatially associated with late Quaternary faults (Wesnousky et al., 2005; Henry and 

Colgan, 2011), but relations in the Tuscarora area indicate that regions lacking well-

documented Quaternary deformation should still be considered prospective.  

Furthermore, the presence of several high-temperature systems in northeastern 

Nevada, including Beowawe and Tuscarora, demonstrates the viability geothermal 

activity in this region despite low present-day strain rates as indicated by GPS data 

(Bennett et al., 2003; Kreemer et al., 2012). Therefore, extensional terranes, such as 

northeastern Nevada, undergoing relatively low rates of Holocene deformation but 

characterized by widespread Quaternary faulting should not be precluded from 

geothermal exploration.  Northeastern Nevada may therefore have higher geothermal 

potential than suggested by previous studies.  

6. Conclusions  

The structural and stratigraphic framework of the Tuscarora geothermal area has 

been defined by detailed geologic mapping and structural analysis, integrated with well 

and regional geologic data. The northeastern Tuscarora Mountains consist mainly of 

metasedimentary Paleozoic basement nonconformably overlain by Eocene tuff, andesite, 

and dacite of the Tuscarora volcanic field, Oligocene-middle Miocene tuffaceous 

sedimentary rocks, and middle Miocene rhyolite and dacite lavas. Tertiary strata are 

exposed in gently to moderately east- and west-tilted fault blocks bounded by northerly-

striking normal faults. The subsurface geology of the geothermal field is dominated by 

intracaldera deposits of the Big Cottonwood Canyon caldera to depths of 700-1000 m, 

including blocks of basement-derived megabreccia. Recognition of the Tertiary-
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Paleozoic nonconformity at Tuscarora as a caldera margin has provided a new framework 

to interpret subsurface data and further develop a structural and stratigraphic model of the 

geothermal system.  

Detailed geologic analyses reveal that the Tuscarora geothermal field is 

characterized by two structural settings: 1) a broad left step-over or relay ramp in a major 

normal fault system, and 2) an accommodation zone, which occupies part of the relay 

ramp formed by the step-over. Abundant fault intersections in Paleozoic basement 

formed by the alternating reactivation of crossing normal faults of opposite dip within the 

axial part of the accommodation zone likely promotes increased permeability and fluid 

circulation at depth. A ring fracture network related to subsidence of the Big Cottonwood 

Canyon caldera may be also be present within the geothermal field and further enhance 

basement permeability. Steeply dipping north-northeast-striking normal faults provide a 

subvertical conduit for geothermal fluids and control the distribution of hydrothermal 

surface features.  

GPS geodetic data, earthquake focal mechanism solutions, and kinematic data 

from Quaternary faults indicate a northwest-trending extension direction in northeastern 

Nevada (Zoback, 1989; Hammond et al., 2011; Smith et al., 2011). This is compatible 

with the observation that north-northeast-striking normal faults and associated fracture 

networks are the most hydraulically conductive within the geothermal field. Additionally, 

kinematic analysis of fault slip data and the results of a stress inversion at Tuscarora 

reveal an east-west-trending least principal paleostress direction, which probably reflects 

an earlier episode of Miocene extension. 
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This study has identified the axial part of an accommodation zone as the site most 

conducive to fluid up-flow. The recognition of this specific portion of an accommodation 

zone as a favorable structural setting for geothermal activity may be a useful exploration 

tool for development of drilling targets in extensional terranes, as well as for developing 

geologic models of known geothermal fields. Assessment of several other broad step-

overs indicates that geothermal activity may occur in a variety of subsidiary structural 

settings, in addition to accommodation zones. In northeastern Nevada, broad step-overs 

are prospective regions for exploration of blind geothermal systems. Delineation of 

favorable structural settings within step-over regions analogous to Tuscarora, but lacking 

bedrock exposure may further benefit from the findings of this study. On the basis of 

GPS geodetic data, northeastern Nevada is characterized by low present-day strain rates 

but also hosts several high temperature geothermal systems, indicating that electrical-

grade geothermal activity is viable in this tectonic setting. Ultimately, this information 

may help to reduce the risks of targeting successful geothermal wells in such settings.  
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APPENDIX A: DESCRIPTION OF MAP UNITS 

Quaternary Deposits 

Qa – Active channels and recently active fan alluvium, undivided (Holocene to 

Pleistocene) Channel and overbank deposits of creeks, annually active washes, and 
recently to annually active alluvial fans. Generally consists of poorly sorted silt to pebble-
cobble gravel up to 5 cm in diameter. Clasts are subrounded to well-rounded. In the 
southern reaches of the Hot Creek drainage, this unit consists of moderately well sorted 
pale gray silt and sand. Where incised by streams, Qa is exposed steep-sided gullies up to 
5 m deep.  Thicknesses are variable and poorly known, but greater than 5 m along Hot 
Creek. 

Qfy – Young fan alluvium (Holocene to Pleistocene) Poorly sorted silt to cobble gravel 
up to 15 cm in diameter; typically matrix supported; clasts are subangular to well-
rounded; clasts are dominantly derived from unit Tdf, rocks of the Tuscarora volcanic 
field, and reworked older fan deposits. Surfaces are commonly vegetated with variable 
soil development. Includes recently reworked alluvium deposited in washes incised into 
older fan deposits of unit Qfo/Qfi. Qfy is less than 7 m thick. 

Qfi – Intermediate fan alluvium (Pleistocene) – Poorly sorted silt to pebble gravel up 
to 6 cm in diameter; typically matrix supported; clasts are subrounded to well-rounded; 
clasts are dominantly derived from unit Tdf, rocks of the Tuscarora volcanic field, and 
reworked older fan deposits. Surfaces are commonly vegetated with variable soil 
development and erosionally rounded near fan edges. Qfi surfaces are distinguished 
based on their intermediate elevation, relative to units Qfy and Qfo. Thicknesses range 
from 2 to 10 m. 

Qfo – Old alluvial fan (Pleistocene) Poorly sorted sand to cobble gravel up to 15 cm in 
diameter; typically matrix supported; clasts are subangular to subrounded and consist of 
Miocene volcanic rocks; surfaces are commonly heavily vegetated with some soil 
development. Fan edges are erosionally rounded. Fan surfaces are typically dissected by 
Qfi, Qfy, and/or Qa. Unit Qfo is deposited on the flanks of the northeastern Tuscarora 
Mountains and the Independence Mountains. Qfo is less than 10 m thick. 

Qfi/Qfo – Intermediate and old fan alluvium, undivided (Pleistocene) Poorly to well-
sorted sand to pebble-cobble gravel up to 15 cm in diameter. Typically clast-supported 
with very minor sand matrix; poorly indurated and nonstratified. Clasts are subangular to 
well-rounded and consist of rocks derived from unit Tdf and rocks of the Tuscarora 
volcanic field. Fan surfaces are smooth to undulating with little to no soil development.  
Unit Qfi/Qfo overlies lavas of the Tuscarora volcanic field and unit Tst. Thicknesses are 
poorly defined but range up to 12 m near fan heads. 
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Qfqy – Young fan alluvium and recently active alluvium containing > 10% quartzite 

clasts, undivided (Holocene to late Pleistocene) Poorly sorted silt to cobble gravel up to 
20 cm in diameter; typically matrix supported; clasts are subangular to well-rounded and 
consist of quartzite and Miocene volcanic rocks. Qfqy is derived from older quartzite 
clast-bearing fan deposits, including Qfqi, Qfqo, Qfqi/Qfqo, and QTq and Miocene 
volcanic rocks, including units Tdf and Taf. Surfaces are sparsely to non-vegetated with 
weak to no soil development. Deposit thickness is poorly known, but does not exceed 5 
m.  

Qfqi – Intermediate fan alluvium containing > 10% quartzite clasts (Pleistocene) 

Poorly sorted sand to cobble gravel up to 20 cm in diameter with isolated boulders up to 
50 cm in diameter; matrix supported; clasts are subangular to well-rounded; surfaces are 
smooth to moderately dissected. Deposits are mostly derived from older quartzite clast-
bearing fan deposits of northern Independence Valley, including Qfqo, Qfqi/Qfqo, and 
QTq. Locally contains subangular clasts of Miocene volcanic rocks, including units Tdf 
and Taf. Surfaces are sparsely to non-vegetated. Deposit is distinguished based on the 
intermediate elevation of the Qfqi surface, relative to units Qfqy and Qfqo. Deposit 
thickness is generally less than 8 m, but may be much greater along the Independence 
Mountains range front. 

Qfqo – Old alluvial fan containing > 10% quartzite clasts (Pleistocene) Poorly sorted 
sand to cobble gravel up to 20 cm in diameter with isolated boulders up to 50 cm in 
diameter. Typically matrix supported with subrounded to well-rounded clasts of quartzite 
and chert. Clasts are derived from unit QTq and possibly Pleistocene glacial till deposits 
of the northern Independence Mountains (Sibbett, 1982). Surfaces are broadly rounded to 
undulating. Soil development is weak and surfaces are sparsely vegetated. Deposits are at 
least 15 m thick. 

Qfqi/Qfqo – Intermediate and old fan alluvium containing > 10% quartzite clasts, 

undivided (Pleistocene) Poorly sorted sand to cobble gravel with isolated boulders up to 
50 cm in diameter; matrix- to clast-supported with subangular to well-rounded clasts. 
Typically dominated by quartzite pebbles and cobbles, and up to 10% pebbles derived 
from units Tdf and Taf. Locally contains subangular pebbles of chert, derived from unit 
QTf. Soil is locally up to 70 cm thick. Vegetation is sparse to dense. Thin deposits (≤ 1.5 
m) of Qfqi/Qfqo mantle units Tst, Tdf, and Taf along the northern margin of 
Independence Valley. Thickness is 1–5 m. 

Qgc – Gravel and colluvium, undivided Moderate to well-sorted pebble-cobble gravel 
up to 10 cm in diameter deposited on gentle slopes. Clast-supported deposits contain 
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angular to subround pebbles of porphyritic volcanic rocks. Soil is very weakly developed 
to absent. Deposits up to 1 m thick. 

Qls – Landslide deposits Slope-failure-derived deposits of unconsolidated debris.  
Deposits are typically hummocky and lobate. Curvilinear headwall scarps are 
recognizable, though commonly rounded by erosion. Landslide deposits are moderately 
to densely vegetated. Estimated maximum thickness is ~10 m. 

Qc – Colluvium and talus, undivided Deposits of colluvium and talus on, and at the 
base of steep slopes. Deposits are typically poorly sorted, clast-supported with angular to 
subangular pebbles to boulders up to 40 cm long. Deposits are generally less than 4 m 
thick. 

 

Geothermal Deposits 

Qss – Siliceous sinter, undivided (late Holocene to late Pleistocene) Undivided 
chalcedonic and opaline sinter terraces, mounds, and aprons precipitated at active and 
ancient hot springs; restricted to the northeast-trending zone of hydrothermal alteration 
and geothermal activity along the margins of Hot Creek. Locally, deposits of Qfy mantle 
unit Qss. Unit crops out in T41N R52E Sections 5 and 8. Estimated maximum thickness 
is ~ 10 m.  

Qfs – Silica-cemented alluvium (Holocene to late Pleistocene) Poorly to moderately-
sorted coarse sand to cobble-gravel up to 15 cm in diameter cemented by silica; well-
indurated deposits, locally forming erosionally resistant ledges; mainly mapped to the 
south and southeast of the large sinter terrace (unit Qss). Deposits from 0.5 – 1.5 m thick. 
Unit crops out in T41N R52E Sections 5, 8, and 17. 

Qfsq – Silica-cemented alluvium containing >10% quartzite clasts (Pleistocene?) 

Poorly sorted coarse sand to cobble-gravel up to 25 cm in diameter cemented by silica. 
Unaltered quartzite clasts are cemented by silicified sand matrix; well indurated; clast-
supported, consisting of >10% rounded quartzite cobbles, as well as subangular to 
subrounded volcanic clasts. Silica induration is of the same style as unit Qfs. Less than 1 
m thick. Unit crops out in T41N R52E Section 17 (NE ¼).Unit is up to 1.5 m thick. 

Qbh – Silicified fault breccia Silica-cemented breccia. Qbh contains angular clasts of 
tuffaceous siltstone of unit Tst and porphyritic dacite of unit Ti up to 15 cm long. Clasts 
are argillically altered, though phenocryst composition in dacite clasts remain discernible. 
Siltstone clasts are pitted and partially flooded with silica. The matrix consists of coarse 
cataclasite flooded with opalized silica. Locally, silica cement is finely banded. Dark 
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orange to dark red exotic iron oxide coats the weathered outcrop surface. Qbh lies in the 
footwall of a west-dipping fault zone that bounds the large sinter terrace (Qss) to the east. 
Unit crops out in T41N R52E Section 8 (NE ¼). 

 

Quaternary and Tertiary deposits 

QTbf – Silicified cataclasite Well-indurated silicified fault zone breccia. Composed of 
~70% finely milled matrix, quartz stringers (1–5 mm wide), quartz vein fragments (≤ 15 
cm long), and angular lithic clasts of tuff (≤ 5 mm long). Unit QTbf is exposed along the 
Cottonwood Peak fault in tabular, steeply dipping, fin-shaped outcrops with up to 5 m of 
vertical relief. The age of faulting and hydrothermal alteration along the fault zone is 
constrained to between ~16 Ma and Holocene. The age of the youngest clearly faulted 
unit (Tdf) is ~16 Ma.  Locally, silicified cataclasite of the Cottonwood Peak fault forms a 
buttress unconformity with Quaternary fan deposits in the hanging wall. Quaternary units 
contacting the fault zone rocks are not offset by faulting. Rather, the fan deposits 
accumulated at the break in slope formed between the silicified fault zone rock and less 
resistant tuffaceous sedimentary rock (unit Tst) in the hanging wall. Unit crops out in 
T41N R52E Section 6 (NW ¼). Perpendicular to fault strike, QTbf ranges in thickness 
from ~1–8 m. 

QTq – Quartzite-bearing coarse gravel Moderate to well-sorted, well-rounded coarse 
pebble- to boulder-sized quartzite gravel mostly less than 40 cm in diameter with sparse 
boulders up to 1.2 meters in diameter. Clasts are possibly derived from Ordovician 
McAfee Quartzite of the Independence Mountains, described by Miller et al. (1981) and 
Muntean and Henry (2006). Quartzite boulders are up to 1.3 m in diameter. Deposits are 
non-stratified. Matrix was not exposed. Surfaces are typically smoothed and non-
vegetated. Most QTq deposits are gently tilted (4° to 10o) and not associated with the 
present drainage pattern. Margins of deposits commonly bleed out into younger fan 
surfaces. A QTq surface is gently deformed in part by drag in the hanging wall of the 
Independence Mountains fault zone (T41N R52E Sections 3 and 10). Erosional remnants 
of QTq are commonly only 1–2 m thick with a maximum observed thickness of ~6 m. 
This unit may be thicker along the Independence Mountains range front, where it is 
mostly concealed beneath younger fan deposits. 

QTf – Old fan alluvium (Pleistocene to late Tertiary) Poorly to moderately sorted sand 
to cobble gravel up to 20 cm in diameter; clast-supported; clasts are subrounded to well 
rounded. Dominated by chert with lesser quartzite and siltstone clasts. Deposit lies 
beneath unit QTq and is exposed in a single locality (T41N R52E Section 9). Thickness is 
approximately 3 m. 
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TERTIARY ROCKS 

Miocene Lavas 

Taf – Porphyritic dacite (middle Miocene) Dacite flows, typically glassy, locally 
spheriulitic, with poorly developed columnar joints perpendicular to the base of flows. 
Flows contain 4-11% phenocrysts. Phenocrysts include 3-10% euhedral to subhedral 
plagioclase (0.5-4 mm long), 1% subhedral clinopyroxene (0.2-2 mm long), and <1% 
anhedral quartz (≤ 2 mm long). These flows are mainly preserved as erosional remnants 
atop more resistant Tdf flows. Thickness – 190 m. 

Tvt – Glassy dacite flow (middle Miocene) Dacite flow distinguished by very fine flow 
banding. Flow-parallel foliation is readily observed in outcrop where weathering 
accentuates finely banded groundmass. Tvt is relatively porous, and soft, though discrete 
vesicles are not evident in hand sample. This unit weathers easily and is preserved either 
atop, or as a distinctive flow within, the uppermost portion of unit Tdf. The lateral extent 
of Tvt is limited. Phenocrysts include 2-3% subhedral embayed sanidine (0.5–1 mm 
long), 1% plagioclase (2-3 mm long) with sharp normal zoning, and 1% anhedral quartz 
(≤ 0.5 mm long). Thickness – 40 m. 

Tdf – Porphyritic rhyolite (middle Miocene) Laterally extensive package of grayish-
pink porphyritic rhyolite flows. Distinctive flow-parallel platy partings spaced 1-3 cm 
apart characterize the middle of this unit. Dips of platy partings steepen near flow tops.  
Elliptical (flattened) vesicles are locally present at flow tops. Also contains sparse glass-
dominant layers up to several meters thick and pods of flow breccia. Coarsely porphyritic 
unit with 12-20% phenocrysts, including 4-15% subhedral to euhedral plagioclase (0.5-3 
mm long), 2-12% anhedral quartz (0.5-3 mm long), 2-3% euhedral sanidine (3-5 mm 
long with sparse cumulophyric aggregates up to 8 mm long), <1% magnetite (0.5 mm 
long). Groundmass ranges from entirely glass to 90% microcrystalline feldspar microlites 
with minor glass stringers. Thickness – 120 m. 

 

Oligocene (?) Sedimentary Rocks 

Tst – Tuffaceous sedimentary rocks of Chicken Creek (middle Eocene to middle 

Miocene) White to light-tan tuffaceous siltstone and sandstone with sparse conglomerate 
lenses up to 5 m thick. This unit encompasses the undivided package of sedimentary 
rocks that lie beneath unit Tdf and above the igneous rocks of the Tuscarora volcanic 
field. Tst is dominated by poorly-indurated massive siltstone composed of subrounded 
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grains of devitrified tuff, angular grains of plagioclase (2–20%), quartz grains (<1%), and 
rare broken biotite grains (<1%). Sandstone is moderately indurated, thinly bedded, 
locally cross-bedded. The sandstone is a moderately sorted litharenite, consisting of 
coarse sand to coarse silt with subangular grains of feldspar, biotite, quartz, and well-
rounded grains of pumice. Conglomerate lenses between 0.5 and 5 m thick occur 
throughout the section. These conglomerates are well indurated and consequently 
relatively resistant within the Tst section. Conglomerate lenses are clast-supported, 
moderately to poorly-sorted with subrounded to subangular clasts of porphyritic andesite, 
porphyritic dacite, argillite, quartzite, and siltstone of units Ms and Pu up to 10 cm long. 
Unit Tst is pervasively silicified adjacent to the Cottonwood Peak fault (T41N R52E 
Section 6) and within the geothermal area. Total thickness is ~300 m. 

 

Eocene Rocks – Tuscarora Volcanic Field 

Te – Andesite and dacite undivided Poorly exposed porphyritic flows, domes, and 
intrusive rocks of andesitic to dacitic composition associated with the Tuscarora volcanic 
field. Unit Te encompasses units Tsa, Tsd, Tn, and Tao, where weathering and/or poor 
exposure prevents further distinction of these rocks. Phenocryst abundance ranges from 
5–40% and consists of some combination of the following minerals: plagioclase (3-40% 
of rock volume), clinopyroxene (≤ 2%), orthopyroxene (≤ 2%), biotite (≤ 3%), and 
hornblende (≤ 1%). Unit Te includes all rocks of Tuscarora volcanic field that intrude and 
overlie intracaldera deposits of unit Tct. The estimated thickness of Te, constrained by 
drilling within the geothermal field, is ~250 m. 
 
Ti – Porphyritic dacite Medium gray porphyritic (~17% phenocrysts) dacite domes and 
possibly flows. Weathers distinctly as platy talus (2-6 cm thick) which accumulates at the 
base of outcrops. Groundmass composed of pilotaxitic plagioclase microcrysts. 
Phenocrysts consist of 15% euhedral to subhedral plagioclase (0.3–4 mm long) are 
commonly embayed; 2–3% biotite (0.3–2 mm long), commonly partially replaced by 
magnetite. Weak hydrothermal alteration and secondary mineralization is present near the 
Cottonwood Peak fault and adjacent to the geothermal field. Secondary mineralization 
includes interstitial chalcedony in groundmass (≤ 3% of rock volume) and rare 
replacement of biotite by epidote. Unit Ti is nonconformably overlain by unit Tst. 
Thickness probably varies and is estimated to be less than 250 m. 

Tsa – Densely porphyritic andesite Dark gray andesite flows locally exhibit flow-
parallel planar partings spaced 5-20 cm apart. Tsa locally contains pods of flow breccia. 
Columnar jointing is well developed at the base of some flows within unit Tsa. 
Groundmass ranges from glass-dominant to felty, with plagioclase microlites. Phenocryst 
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assemblage consists of 15–30% subhedral to euhedral plagioclase, commonly embayed 
(1-4 mm long) and 2% equant subhedral grains of clinopyroxene (0.2– 1 mm long). 

Ts – Tuffaceous sandstone, undivided Moderately sorted, coarse-grained tuffaceous 
sandstone intercalated between lava flows of unit Tsa. Unit Ts is thin bedded and well 
indurated, consisting mainly of sand-sized particles of devitrified pumice with grains of 
rounded quartz, feldspar, and broken biotite. Thickness is less than 10 m. 

Tsd – Porphyritic andesite Pale gray hornblende-bearing andesite. The phenocryst 
assemblage consists of 15% euhedral plagioclase (0.8–3 mm long) commonly in 
cumulophyric aggregates up to 5 mm in diameter; 2% subhedral biotite (0.3–1 mm long); 
<1% euhedral to subhedral hornblende (0.4–0.8 mm), with partially resorbed rims. 
Groundmass is cryptocrystalline with microphenocrysts of plagioclase, lessor pyroxene, 
glass, and sparse magnetite. Thickness is poorly known but probably less than 300 m. 

Tn – Porphyritic andesite Medium-gray porphyritic andesite flow breccia poorly 
exposed beneath colluvium and alluvial fans along the north bank of the Owyhee River. 
Trachytic groundmass is composed of plagioclase laths and sparse pyroxene. Phenocryst 
assemblage consists of 7% subhedral to euhedral plagioclase (0.4–3 mm long); 2% 
subhedral to euhedral orthopyroxene (0.2– 0.8 mm) occurs in cumulophyric aggregates 
up to 3 mm in diameter; <1% clinopyroxene (0.2– 0.5 mm); and <1% subhedral biotite 
(0.5–0.8 mm long). Thickness is poorly known but probably less than 100 m. 

Tao – Porphyritic andesite Dark gray andesite with closely spaced (1–3 cm) planar 
partings, which are interpreted to be flow-parallel. Groundmass is commonly glassy and 
dark green. Phenocrysts (<9%) consist of ~5% euhedral plagioclase laths, 2% euhedral 
augite (≤ 5 mm long), and <1% biotite (≤ 1 mm long). Where present, this unit directly 
overlies Tct. Thickness is poorly known but probably less than 300 m. 

Tct – Tuff of Big Cottonwood Canyon Light gray to tan, moderately to densely welded, 
porphyritic (2-6% phenocrysts) intracaldera tuff, containing fine-grained phenocrysts of 
quartz, sanidine, plagioclase, and biotite. The tuff is abundantly lithic, containing up to 
~15% subangular to angular clasts of bluish-gray argillite, quartzite, and siltstone derived 
from units Ms and Pu, as well as porphyritic dacite and andesite derived from the 
Tuscarora volcanic field. Lithic clasts are mostly less than 3 cm in length with the 
exception of a siltstone block ~1.5 m in diameter (T41N R51E Section 1 SW ¼). Unit Tct 
locally contains up to ~20% pale tan fiamme (1-5 cm long). Tuff is crystal poor and 
contains quartz (2-4%; 0.6-1.2 mm long), sanidine (1-3%; 0.6-1 mm long), plagioclase 
(<1-2%; ~1 mm long), and biotite (~1%; ≤1 mm long). Phenocryst assemblage, abundant 
lithics, and overall thickness distinguish tuff of the Big Cottonwood Canyon caldera from 
ash-flow tuffs elsewhere in the Tuscarora volcanic field (Henry et al., 1999). The tuff is 
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non-stratified, though locally, fiamme define a prominent compaction foliation. Tuff is at 
least 2.5 km thick, based on the 30°–60° northeast dips across a 4 km-wide area of 
continuous exposure west of the geothermal area. Tct thins eastward to ~700 m within 
the geothermal area. 

Tr – Dacite intrusion Porphyritic dacite intrusion with distinctive pale pink to light gray 
crystalline groundmass. Felty groundmass is mainly composed of plagioclase microlites. 
Phenocrysts consist of 15% euhedral to subhedral plagioclase (0.5–3 mm long) and 2-3% 
euhedral to subhedral biotite (≤ 1.5 mm long). Relatively abundant biotite phenocrysts 
against pale groundmass pink distinguish this unit from other andesite and dacite of the 
Tuscarora volcanic field. 

Tbr – Intracaldera megabreccia and mesobreccia deposits, undivided Volcanogenic 
breccia deposits near the inner walls and floor of the Big Cottonwood Canyon. Unit Tbr 
contains two main breccia subtypes: 1) Heterolithic mesobreccia that is variably matrix 
and clast-supported. The breccia matrix is quartz-rich and composed mainly of sand-sized 
dark gray clastic material. Clasts are angular to subrounded and range from 5 mm to ~1.2 
m in diameter. Clasts of both Paleozoic metasedimentary rocks and Eocene volcanic 
rocks are present, with the ratio of Paleozoic to Eocene clasts ranging from 10:1 to 1:10. 
No gradation of rock type or clast size is apparent in the mesobreccia. These caldera-
related mesobreccia deposits are further distinguished from tectonic breccias by their 
vertical thickness (up to 250 m). 2) Blocks of basement-derived megabreccia that range 
from 2 to 73 m in diameter, composed mainly of argillite and siltstone with lessor 
calcareous sandstone and sandy limestone. Unit Tbr does not crop out in the study but is 
encountered in drill holes within the geothermal field. 

PALEOZOIC BASEMENT 

Ms – Siltstone, shale, and silty limestone Poorly exposed siltstone, identified and 
described in detail by Fagan (1962) and Miller et al. (1984), belonging to the 
Mississippian-Devonian Schoonover Formation. Unit Ms weathers to reddish brown, tan, 
and blue-gray siltstone chips. Silty limestone turbidite sequences, interbedded with dark 
gray siltstone and metavolcanic rocks, of the Schoonover Formation are intercepted in 
geothermal drill holes but do not crop out in the study area. 

Pu – Paleozoic metasedimentary rocks, undivided Chert, argillite, shale, and quartzite 
of the Roberts Mountains allochthon, regionally correlated with the Ordovician Valmy 
Formation (Henry et. al, 1999; Miller, 1984); described in detail by Coats (1987) and 
Muntean and Henry (2006). 
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